Two cortical areas mediate multisensory integration in superior colliculus neurons.

نویسندگان

  • W Jiang
  • M T Wallace
  • H Jiang
  • J W Vaughan
  • B E Stein
چکیده

The majority of multisensory neurons in the cat superior colliculus (SC) are able to synthesize cross-modal cues (e.g., visual and auditory) and thereby produce responses greater than those elicited by the most effective single modality stimulus and, sometimes, greater than those predicted by the arithmetic sum of their modality-specific responses. The present study examined the role of corticotectal inputs from two cortical areas, the anterior ectosylvian sulcus (AES) and the rostral aspect of the lateral suprasylvian sulcus (rLS), in producing these response enhancements. This was accomplished by evaluating the multisensory properties of individual SC neurons during reversible deactivation of these cortices individually and in combination using cryogenic deactivation techniques. Cortical deactivation eliminated the characteristic multisensory response enhancement of nearly all SC neurons but generally had little or no effect on a neuron's modality-specific responses. Thus, the responses of SC neurons to combinations of cross-modal stimuli were now no different from those evoked by one or the other of these stimuli individually. Of the two cortical areas, AES had a much greater impact on SC multisensory integrative processes, with nearly half the SC neurons sampled dependent on it alone. In contrast, only a small number of SC neurons depended solely on rLS. However, most SC neurons exhibited dual dependencies, and their multisensory enhancement was mediated by either synergistic or redundant influences from AES and rLS. Corticotectal synergy was evident when deactivating either cortical area compromised the multisensory enhancement of an SC neuron, whereas corticotectal redundancy was evident when deactivation of both cortical areas was required to produce this effect. The results suggest that, although multisensory SC neurons can be created as a consequence of a variety of converging tectopetal afferents that are derived from a host of subcortical and cortical structures, the ability to synthesize cross-modal inputs, and thereby produce an enhanced multisensory response, requires functional inputs from the AES, the rLS, or both.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparisons of cross-modality integration in midbrain and cortex.

Multisensory neurons are abundant in the superior colliculus and anterior ectosylvian cortex of the cat. Despite the fact that these areas receive inputs from different regions, and are likely to be involved in different functional roles, there multisensory neurons have many fundamental similarities. They all have multiple receptive fields, one for each sensory input, and these receptive fields...

متن کامل

RAPID COMMUNICATION Multisensory Integration in the Superior Colliculus of the Alert Cat

Wallace, Mark T., M. Alex Meredith, and Barry E. Stein. Multi1989), and in other instances anesthetics can degrade or sensory integration in the superior colliculus of the alert cat. J. eliminate brain stem sensory responses (Kuwada et al. Neurophysiol. 80: 1006–1010, 1998. The modality convergence 1989). Furthermore, anesthetics can significantly affect corpatterns, sensory response properties...

متن کامل

Cortex controls multisensory depression in superior colliculus.

Multisensory depression is a fundamental index of multisensory integration in superior colliculus (SC) neurons. It is initiated when one sensory stimulus (auditory) located outside its modality-specific receptive field degrades or eliminates the neuron's responses to another sensory stimulus (visual) presented within its modality-specific receptive field. The present experiments demonstrate tha...

متن کامل

Neonatal cortical ablation disrupts multisensory development in superior colliculus.

The ability of cat superior colliculus (SC) neurons to synthesize information from different senses depends on influences from two areas of the cortex: the anterior ectosylvian sulcus (AES) and the rostral lateral suprasylvian sulcus (rLS). Reversibly deactivating the inputs to the SC from either of these areas in normal adults severely compromises this ability and the SC-mediated behaviors tha...

متن کامل

The development of cortical multisensory integration.

Although there are many perceptual theories that posit particular maturational profiles in higher-order (i.e., cortical) multisensory regions, our knowledge of multisensory development is primarily derived from studies of a midbrain structure, the superior colliculus. Therefore, the present study examined the maturation of multisensory processes in an area of cat association cortex [i.e., the a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 85 2  شماره 

صفحات  -

تاریخ انتشار 2001